MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. EN 1.4630 Stainless Steel

WE43B magnesium belongs to the magnesium alloys classification, while EN 1.4630 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
23
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 140
300
Tensile Strength: Ultimate (UTS), MPa 250
480
Tensile Strength: Yield (Proof), MPa 200
250

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 180
800
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
28
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 53
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 28
2.5
Embodied Energy, MJ/kg 250
36
Embodied Water, L/kg 910
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
92
Resilience: Unit (Modulus of Resilience), kJ/m3 430
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 36
17
Strength to Weight: Bending, points 46
18
Thermal Diffusivity, mm2/s 28
7.5
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 0 to 0.020
0 to 0.5
Iron (Fe), % 0 to 0.010
77.1 to 86.7
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.2 to 1.5
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0