MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. EN 1.4971 Stainless Steel

WE43B magnesium belongs to the magnesium alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
210
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 110
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
81
Shear Strength, MPa 140
530
Tensile Strength: Ultimate (UTS), MPa 250
800
Tensile Strength: Yield (Proof), MPa 200
340

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 960
450
Thermal Conductivity, W/m-K 51
13
Thermal Expansion, µm/m-K 27
15

Otherwise Unclassified Properties

Base Metal Price, % relative 34
70
Density, g/cm3 1.9
8.4
Embodied Carbon, kg CO2/kg material 28
7.6
Embodied Energy, MJ/kg 250
110
Embodied Water, L/kg 910
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
220
Resilience: Unit (Modulus of Resilience), kJ/m3 430
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36
26
Strength to Weight: Bending, points 46
23
Thermal Diffusivity, mm2/s 28
3.4
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0 to 0.010
24.3 to 37.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.0050
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.0 to 3.0
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0