MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. SAE-AISI 4140 Steel

WE43B magnesium belongs to the magnesium alloys classification, while SAE-AISI 4140 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is SAE-AISI 4140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
11 to 26
Fatigue Strength, MPa 110
360 to 650
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 140
410 to 660
Tensile Strength: Ultimate (UTS), MPa 250
690 to 1080
Tensile Strength: Yield (Proof), MPa 200
590 to 990

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
43
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 53
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.4
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 28
1.5
Embodied Energy, MJ/kg 250
20
Embodied Water, L/kg 910
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
74 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 430
920 to 2590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36
25 to 38
Strength to Weight: Bending, points 46
22 to 30
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 15
20 to 32

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0 to 0.010
96.8 to 97.8
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0