MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. C81500 Copper

WE43B magnesium belongs to the magnesium alloys classification, while C81500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 2.2
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
44
Tensile Strength: Ultimate (UTS), MPa 250
350
Tensile Strength: Yield (Proof), MPa 200
280

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 550
1080
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 51
320
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
82
Electrical Conductivity: Equal Weight (Specific), % IACS 53
83

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 1.9
8.9
Embodied Carbon, kg CO2/kg material 28
2.6
Embodied Energy, MJ/kg 250
41
Embodied Water, L/kg 910
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
56
Resilience: Unit (Modulus of Resilience), kJ/m3 430
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 61
18
Strength to Weight: Axial, points 36
11
Strength to Weight: Bending, points 46
12
Thermal Diffusivity, mm2/s 28
91
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 0 to 0.020
97.4 to 99.6
Iron (Fe), % 0 to 0.010
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.5