MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. S31260 Stainless Steel

WE43B magnesium belongs to the magnesium alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
23
Fatigue Strength, MPa 110
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
80
Shear Strength, MPa 140
500
Tensile Strength: Ultimate (UTS), MPa 250
790
Tensile Strength: Yield (Proof), MPa 200
540

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 53
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
20
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 28
3.9
Embodied Energy, MJ/kg 250
53
Embodied Water, L/kg 910
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
160
Resilience: Unit (Modulus of Resilience), kJ/m3 430
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 36
28
Strength to Weight: Bending, points 46
24
Thermal Diffusivity, mm2/s 28
4.3
Thermal Shock Resistance, points 15
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.020
0.2 to 0.8
Iron (Fe), % 0 to 0.010
59.6 to 67.6
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.0050
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.1 to 0.5
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0