MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. 5182 Aluminum

WE54A magnesium belongs to the magnesium alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 4.3 to 5.6
1.1 to 12
Fatigue Strength, MPa 98 to 130
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
25
Shear Strength, MPa 150 to 170
170 to 240
Tensile Strength: Ultimate (UTS), MPa 270 to 300
280 to 420
Tensile Strength: Yield (Proof), MPa 180
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
28
Electrical Conductivity: Equal Weight (Specific), % IACS 47
94

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 29
8.9
Embodied Energy, MJ/kg 260
150
Embodied Water, L/kg 900
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
120 to 950
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
51
Strength to Weight: Axial, points 39 to 43
29 to 44
Strength to Weight: Bending, points 49 to 51
36 to 47
Thermal Diffusivity, mm2/s 28
53
Thermal Shock Resistance, points 18 to 19
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93.2 to 95.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
0 to 0.15
Iron (Fe), % 0 to 0.010
0 to 0.35
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
4.0 to 5.0
Manganese (Mn), % 0 to 0.030
0.2 to 0.5
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15