MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. A206.0 Aluminum

WE54A magnesium belongs to the magnesium alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 44
70
Elongation at Break, % 4.3 to 5.6
4.2 to 10
Fatigue Strength, MPa 98 to 130
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 150 to 170
260
Tensile Strength: Ultimate (UTS), MPa 270 to 300
390 to 440
Tensile Strength: Yield (Proof), MPa 180
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 570
550
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 25
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
30
Electrical Conductivity: Equal Weight (Specific), % IACS 47
90

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 1.9
3.0
Embodied Carbon, kg CO2/kg material 29
8.0
Embodied Energy, MJ/kg 260
150
Embodied Water, L/kg 900
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
46
Strength to Weight: Axial, points 39 to 43
36 to 41
Strength to Weight: Bending, points 49 to 51
39 to 43
Thermal Diffusivity, mm2/s 28
48
Thermal Shock Resistance, points 18 to 19
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93.9 to 95.7
Copper (Cu), % 0 to 0.030
4.2 to 5.0
Iron (Fe), % 0 to 0.010
0 to 0.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0 to 0.15
Manganese (Mn), % 0 to 0.030
0 to 0.2
Nickel (Ni), % 0 to 0.0050
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0 to 0.15