MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ACI-ASTM CA40F Steel

WE54A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
230
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
13
Fatigue Strength, MPa 98 to 130
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Tensile Strength: Ultimate (UTS), MPa 270 to 300
770
Tensile Strength: Yield (Proof), MPa 180
550

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 52
27
Thermal Expansion, µm/m-K 25
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 47
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.5
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 29
2.0
Embodied Energy, MJ/kg 260
28
Embodied Water, L/kg 900
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
94
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
28
Strength to Weight: Bending, points 49 to 51
24
Thermal Diffusivity, mm2/s 28
7.2
Thermal Shock Resistance, points 18 to 19
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
81.6 to 88.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.5
Sulfur (S), % 0
0.2 to 0.4
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0