MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. AISI 310MoLN Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
190
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
28
Fatigue Strength, MPa 98 to 130
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 150 to 170
400
Tensile Strength: Ultimate (UTS), MPa 270 to 300
610
Tensile Strength: Yield (Proof), MPa 180
290

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
14
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
28
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
5.0
Embodied Energy, MJ/kg 260
70
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
21
Strength to Weight: Bending, points 49 to 51
20
Thermal Diffusivity, mm2/s 28
3.7
Thermal Shock Resistance, points 18 to 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
45.2 to 53.8
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0 to 0.0050
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0