MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.4584 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.4584 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.4584 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
150
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
34
Fatigue Strength, MPa 98 to 130
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Tensile Strength: Ultimate (UTS), MPa 270 to 300
500
Tensile Strength: Yield (Proof), MPa 180
210

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 960
460
Thermal Conductivity, W/m-K 52
17
Thermal Expansion, µm/m-K 25
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 47
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 29
5.7
Embodied Energy, MJ/kg 260
78
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
17
Strength to Weight: Bending, points 49 to 51
17
Thermal Diffusivity, mm2/s 28
4.5
Thermal Shock Resistance, points 18 to 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.030
1.0 to 3.0
Iron (Fe), % 0 to 0.010
41.7 to 52
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.0050
24 to 26
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0