MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.4646 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
34
Fatigue Strength, MPa 98 to 130
340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 150 to 170
500
Tensile Strength: Ultimate (UTS), MPa 270 to 300
750
Tensile Strength: Yield (Proof), MPa 180
430

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 960
480
Thermal Expansion, µm/m-K 25
17

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 260
41
Embodied Water, L/kg 900
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
220
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
27
Strength to Weight: Bending, points 49 to 51
24
Thermal Shock Resistance, points 18 to 19
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.030
1.5 to 3.0
Iron (Fe), % 0 to 0.010
59 to 67.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0