MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. Nickel 890

WE54A magnesium belongs to the magnesium alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
39
Fatigue Strength, MPa 98 to 130
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 150 to 170
400
Tensile Strength: Ultimate (UTS), MPa 270 to 300
590
Tensile Strength: Yield (Proof), MPa 180
230

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 960
480
Thermal Expansion, µm/m-K 25
14

Otherwise Unclassified Properties

Base Metal Price, % relative 34
47
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 29
8.2
Embodied Energy, MJ/kg 260
120
Embodied Water, L/kg 900
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
180
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
20
Strength to Weight: Bending, points 49 to 51
19
Thermal Shock Resistance, points 18 to 19
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0 to 0.030
0 to 0.75
Iron (Fe), % 0 to 0.010
17.3 to 33.9
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.0050
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.010
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0