MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. SAE-AISI 1140 Steel

WE54A magnesium belongs to the magnesium alloys classification, while SAE-AISI 1140 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is SAE-AISI 1140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
14 to 18
Fatigue Strength, MPa 98 to 130
230 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
72
Shear Strength, MPa 150 to 170
370 to 420
Tensile Strength: Ultimate (UTS), MPa 270 to 300
600 to 700
Tensile Strength: Yield (Proof), MPa 180
340 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
51
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
1.8
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
1.4
Embodied Energy, MJ/kg 260
18
Embodied Water, L/kg 900
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
89 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
310 to 870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
21 to 25
Strength to Weight: Bending, points 49 to 51
20 to 22
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 18 to 19
18 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.37 to 0.44
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
98.4 to 98.9
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.7 to 1.0
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0
0.080 to 0.13
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0