MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. SAE-AISI 8620 Steel

WE54A magnesium belongs to the magnesium alloys classification, while SAE-AISI 8620 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
13 to 31
Fatigue Strength, MPa 98 to 130
270 to 360
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150 to 170
340 to 420
Tensile Strength: Ultimate (UTS), MPa 270 to 300
520 to 690
Tensile Strength: Yield (Proof), MPa 180
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
39
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.6
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
1.5
Embodied Energy, MJ/kg 260
20
Embodied Water, L/kg 900
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
340 to 880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
18 to 24
Strength to Weight: Bending, points 49 to 51
18 to 22
Thermal Diffusivity, mm2/s 28
10
Thermal Shock Resistance, points 18 to 19
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
96.9 to 98
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.0050
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.010
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0