MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. N08810 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
33
Fatigue Strength, MPa 98 to 130
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 150 to 170
340
Tensile Strength: Ultimate (UTS), MPa 270 to 300
520
Tensile Strength: Yield (Proof), MPa 180
200

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 570
1350
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 25
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 47
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 29
5.3
Embodied Energy, MJ/kg 260
76
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
140
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
18
Strength to Weight: Bending, points 49 to 51
18
Thermal Diffusivity, mm2/s 28
3.0
Thermal Shock Resistance, points 18 to 19
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0 to 0.030
0 to 0.75
Iron (Fe), % 0 to 0.010
39.5 to 50.7
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Nickel (Ni), % 0 to 0.0050
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0