MakeItFrom.com
Menu (ESC)

ZE41A Magnesium vs. S44635 Stainless Steel

ZE41A magnesium belongs to the magnesium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE41A magnesium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
240
Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 3.3
23
Fatigue Strength, MPa 98
390
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 150
450
Tensile Strength: Ultimate (UTS), MPa 210
710
Tensile Strength: Yield (Proof), MPa 140
580

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
22
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
4.4
Embodied Energy, MJ/kg 170
62
Embodied Water, L/kg 940
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
150
Resilience: Unit (Modulus of Resilience), kJ/m3 220
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 41
23
Thermal Diffusivity, mm2/s 59
4.4
Thermal Shock Resistance, points 12
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
61.5 to 68.5
Magnesium (Mg), % 91.7 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.010
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0