MakeItFrom.com
Menu (ESC)

5052-H322 Aluminum

5052-H322 aluminum is 5052 aluminum in the H322 temper. The graph bars on the material properties cards below compare 5052-H322 aluminum to: 5000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

5.6 %

Fatigue Strength

120 MPa 18 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

130 MPa 19 x 103 psi

Tensile Strength: Ultimate (UTS)

230 MPa 33 x 103 psi

Tensile Strength: Yield (Proof)

170 MPa 24 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

190 °C 370 °F

Melting Completion (Liquidus)

650 °C 1200 °F

Melting Onset (Solidus)

610 °C 1120 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

140 W/m-K 80 BTU/h-ft-°F

Thermal Expansion

24 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

35 % IACS

Electrical Conductivity: Equal Weight (Specific)

120 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-760 mV

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.6 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1190 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

12 MJ/m3

Resilience: Unit (Modulus of Resilience)

200 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

24 points

Strength to Weight: Bending

31 points

Thermal Diffusivity

57 mm2/s

Thermal Shock Resistance

10 points

Alloy Composition

Aluminum (Al)Al 95.8 to 97.7
Magnesium (Mg)Mg 2.2 to 2.8
Chromium (Cr)Cr 0.15 to 0.35
Iron (Fe)Fe 0 to 0.4
Silicon (Si)Si 0 to 0.25
Manganese (Mn)Mn 0 to 0.1
Zinc (Zn)Zn 0 to 0.1
Copper (Cu)Cu 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B547: Standard Specification for Aluminum and Aluminum-Alloy Formed and Arc-Welded Round Tube

Environmental Degradation of Advanced and Traditional Engineering Materials, Lloyd H. Hihara et al., 2014.

ASTM B209: Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015