MakeItFrom.com
Menu (ESC)

5456-H321 Aluminum

5456-H321 aluminum is 5456 aluminum in the H321 temper. To achieve this temper, the metal is strain hardened, and then stabilized, to a strength that is roughly a quarter of the way between annealed (O) and full-hard (H38). The treatment process also has to leave the metal with a certain degree of resistance to intergranular and exfoliation corrosion.

The graph bars on the material properties cards below compare 5456-H321 aluminum to: 5000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

90

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

14 %

Fatigue Strength

210 MPa 31 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

210 MPa 30 x 103 psi

Tensile Strength: Ultimate (UTS)

340 MPa 50 x 103 psi

Tensile Strength: Yield (Proof)

250 MPa 37 x 103 psi

Thermal Properties

Latent Heat of Fusion

390 J/g

Maximum Temperature: Corrosion

65 °C 150 °F

Maximum Temperature: Mechanical

190 °C 370 °F

Melting Completion (Liquidus)

640 °C 1180 °F

Melting Onset (Solidus)

570 °C 1060 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

120 W/m-K 68 BTU/h-ft-°F

Thermal Expansion

24 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

29 % IACS

Electrical Conductivity: Equal Weight (Specific)

97 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

9.0 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1170 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

43 MJ/m3

Resilience: Unit (Modulus of Resilience)

470 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

35 points

Strength to Weight: Bending

40 points

Thermal Diffusivity

48 mm2/s

Thermal Shock Resistance

15 points

Alloy Composition

Aluminum (Al) 92 to 94.8
Magnesium (Mg) 4.7 to 5.5
Manganese (Mn) 0.5 to 1.0
Iron (Fe) 0 to 0.4
Silicon (Si) 0 to 0.25
Chromium (Cr) 0.050 to 0.2
Zinc (Zn) 0 to 0.25
Titanium (Ti) 0 to 0.2
Copper (Cu) 0 to 0.1
Residuals 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B928: Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service

ASTM B209: Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

EN 485-2: Aluminium and aluminium alloys. Sheet, strip and plate. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

ISO 6361-2: Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993