MakeItFrom.com
Menu (ESC)

5754-H24 Aluminum

5754-H24 aluminum is 5754 aluminum in the H24 temper. To achieve this temper, the metal is strain hardened, and then partially annealed, to a strength that is roughly halfway between annealed (O) and full-hard (H28).

The graph bars on the material properties cards below compare 5754-H24 aluminum to: 5000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

70

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

7.8 %

Fatigue Strength

100 MPa 15 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

150 MPa 22 x 103 psi

Tensile Strength: Ultimate (UTS)

260 MPa 37 x 103 psi

Tensile Strength: Yield (Proof)

190 MPa 27 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

190 °C 370 °F

Melting Completion (Liquidus)

650 °C 1190 °F

Melting Onset (Solidus)

600 °C 1100 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

130 W/m-K 76 BTU/h-ft-°F

Thermal Expansion

24 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

33 % IACS

Electrical Conductivity: Equal Weight (Specific)

110 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.7 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

18 MJ/m3

Resilience: Unit (Modulus of Resilience)

250 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

27 points

Strength to Weight: Bending

33 points

Thermal Diffusivity

54 mm2/s

Thermal Shock Resistance

11 points

Alloy Composition

Aluminum (Al)Al 94.2 to 97.4
Magnesium (Mg)Mg 2.6 to 3.6
Manganese (Mn)Mn 0 to 0.5
Silicon (Si)Si 0 to 0.4
Iron (Fe)Fe 0 to 0.4
Chromium (Cr)Cr 0 to 0.3
Zinc (Zn)Zn 0 to 0.2
Titanium (Ti)Ti 0 to 0.15
Copper (Cu)Cu 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

Handbook of Aluminum vol. 2: Alloy Production and Materials Manufacturing, George Totten and D. Scott MacKenzie (editors), 2003

EN 754-2: Aluminium and aluminium alloys. Cold drawn rod/bar and tube. Mechanical properties

Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012

ASTM B209: Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

EN 485-2: Aluminium and aluminium alloys. Sheet, strip and plate. Mechanical properties

ISO 6361-2: Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993