MakeItFrom.com
Menu (ESC)

6063-T66 Aluminum

6063-T66 aluminum is 6063 aluminum in the T66 temper. To achieve this temper, the metal is solution heat-treated and artificially aged, with additional process control to yield more favourable properties. The graph bars on the material properties cards below compare 6063-T66 aluminum to: 6000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

11 %

Fatigue Strength

95 MPa 14 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

150 MPa 22 x 103 psi

Tensile Strength: Ultimate (UTS)

250 MPa 37 x 103 psi

Tensile Strength: Yield (Proof)

230 MPa 33 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

160 °C 320 °F

Melting Completion (Liquidus)

650 °C 1210 °F

Melting Onset (Solidus)

620 °C 1140 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

200 W/m-K 120 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

53 % IACS

Electrical Conductivity: Equal Weight (Specific)

180 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-740 mV

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.3 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1190 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

27 MJ/m3

Resilience: Unit (Modulus of Resilience)

370 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

26 points

Strength to Weight: Bending

33 points

Thermal Diffusivity

82 mm2/s

Thermal Shock Resistance

11 points

Alloy Composition

Aluminum (Al) 97.5 to 99.4
Magnesium (Mg) 0.45 to 0.9
Silicon (Si) 0.2 to 0.6
Iron (Fe) 0 to 0.35
Manganese (Mn) 0 to 0.1
Chromium (Cr) 0 to 0.1
Titanium (Ti) 0 to 0.1
Zinc (Zn) 0 to 0.1
Copper (Cu) 0 to 0.1
Residuals 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

Environmental Degradation of Advanced and Traditional Engineering Materials, Lloyd H. Hihara et al., 2014.

EN 754-2: Aluminium and aluminium alloys. Cold drawn rod/bar and tube. Mechanical properties

Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products