MakeItFrom.com
Menu (ESC)

8011A-H111 Aluminum

8011A-H111 aluminum is 8011A aluminum in the H111 temper. To achieve this temper, the metal is strain hardened to a strength that is lower than what is permissible for H11 (1/8-hard). The graph bars on the material properties cards below compare 8011A-H111 aluminum to: otherwise unclassified aluminums (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

25

Elastic (Young's, Tensile) Modulus

69 GPa 10 x 106 psi

Elongation at Break

28 %

Fatigue Strength

33 MPa 4.7 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.8 x 106 psi

Tensile Strength: Ultimate (UTS)

100 MPa 15 x 103 psi

Tensile Strength: Yield (Proof)

34 MPa 4.9 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

170 °C 340 °F

Melting Completion (Liquidus)

650 °C 1190 °F

Melting Onset (Solidus)

630 °C 1170 °F

Specific Heat Capacity

900 J/kg-K 0.21 BTU/lb-°F

Thermal Conductivity

210 W/m-K 120 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

56 % IACS

Electrical Conductivity: Equal Weight (Specific)

180 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.0 % relative

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.2 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

22 MJ/m3

Resilience: Unit (Modulus of Resilience)

8.2 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

11 points

Strength to Weight: Bending

18 points

Thermal Diffusivity

86 mm2/s

Thermal Shock Resistance

4.6 points

Alloy Composition

Aluminum (Al)Al 97.5 to 99.1
Iron (Fe)Fe 0.5 to 1.0
Silicon (Si)Si 0.4 to 0.8
Manganese (Mn)Mn 0 to 0.1
Chromium (Cr)Cr 0 to 0.1
Zinc (Zn)Zn 0 to 0.1
Copper (Cu)Cu 0 to 0.1
Magnesium (Mg)Mg 0 to 0.1
Titanium (Ti)Ti 0 to 0.050
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

Iron in Aluminium Alloys: Impurity and Alloying Element, N. A. Belov et al., 2002

EN 485-2: Aluminium and aluminium alloys. Sheet, strip and plate. Mechanical properties

ISO 6361-2: Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products

Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993