MakeItFrom.com
Menu (ESC)

2024-T4 Aluminum vs. 7204-T4 Aluminum

Both 2024-T4 aluminum and 7204-T4 aluminum are aluminum alloys. Both are furnished in the T4 temper. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2024-T4 aluminum and the bottom bar is 7204-T4 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 16
13
Fatigue Strength, MPa 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 290
220
Tensile Strength: Ultimate (UTS), MPa 480
360
Tensile Strength: Yield (Proof), MPa 310
220

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 500
520
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
39
Electrical Conductivity: Equal Weight (Specific), % IACS 90
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
39
Resilience: Unit (Modulus of Resilience), kJ/m3 680
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 44
34
Strength to Weight: Bending, points 45
39
Thermal Diffusivity, mm2/s 46
58
Thermal Shock Resistance, points 21
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 94.7
90.5 to 94.8
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 3.8 to 4.9
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.35
Magnesium (Mg), % 1.2 to 1.8
1.0 to 2.0
Manganese (Mn), % 0.3 to 0.9
0.2 to 0.7
Silicon (Si), % 0 to 0.5
0 to 0.3
Titanium (Ti), % 0 to 0.15
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
4.0 to 5.0
Zirconium (Zr), % 0 to 0.2
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15