MakeItFrom.com
Menu (ESC)

1050 Aluminum vs. Grade 20 Titanium

1050 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 1050 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.6 to 37
5.7 to 17
Fatigue Strength, MPa 31 to 57
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
47
Shear Strength, MPa 52 to 81
560 to 740
Tensile Strength: Ultimate (UTS), MPa 76 to 140
900 to 1270
Tensile Strength: Yield (Proof), MPa 25 to 120
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
370
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 650
1600
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 24
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.7
5.0
Embodied Carbon, kg CO2/kg material 8.3
52
Embodied Energy, MJ/kg 160
860
Embodied Water, L/kg 1200
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 22
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6 to 110
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
33
Strength to Weight: Axial, points 7.8 to 14
50 to 70
Strength to Weight: Bending, points 15 to 22
41 to 52
Thermal Shock Resistance, points 3.4 to 6.2
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 99.5 to 100
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.4
0 to 0.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.030
71 to 77
Vanadium (V), % 0 to 0.050
7.5 to 8.5
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4

Comparable Variants