MakeItFrom.com
Menu (ESC)

1435 Aluminum vs. AISI 416 Stainless Steel

1435 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1435 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.1 to 32
13 to 31
Fatigue Strength, MPa 27 to 49
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 54 to 87
340 to 480
Tensile Strength: Ultimate (UTS), MPa 81 to 150
510 to 800
Tensile Strength: Yield (Proof), MPa 23 to 130
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 170
680
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 640
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
30
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 200
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 20
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 3.8 to 110
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 8.3 to 15
18 to 29
Strength to Weight: Bending, points 15 to 23
18 to 25
Thermal Diffusivity, mm2/s 93
8.1
Thermal Shock Resistance, points 3.6 to 6.7
19 to 30

Alloy Composition

Aluminum (Al), % 99.35 to 99.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0.3 to 0.5
83.2 to 87.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 0 to 0.1
0

Comparable Variants