MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. 711.0 Aluminum

Both 2014 aluminum and 711.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is 711.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.5 to 16
7.8
Fatigue Strength, MPa 90 to 160
100
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190 to 500
220
Tensile Strength: Yield (Proof), MPa 100 to 440
140

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 510
610
Specific Heat Capacity, J/kg-K 870
860
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.1
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
15
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
45
Strength to Weight: Axial, points 18 to 46
20
Strength to Weight: Bending, points 25 to 46
26
Thermal Diffusivity, mm2/s 58
61
Thermal Shock Resistance, points 8.4 to 22
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.4 to 95
89.8 to 92.7
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0.35 to 0.65
Iron (Fe), % 0 to 0.7
0.7 to 1.4
Magnesium (Mg), % 0.2 to 0.8
0.25 to 0.45
Manganese (Mn), % 0.4 to 1.2
0 to 0.050
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
6.0 to 7.0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.15