MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4335 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4335 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4335 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.5 to 16
45
Fatigue Strength, MPa 90 to 160
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 130 to 290
400
Tensile Strength: Ultimate (UTS), MPa 190 to 500
570
Tensile Strength: Yield (Proof), MPa 100 to 440
230

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
210
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 46
20
Strength to Weight: Bending, points 25 to 46
19
Thermal Diffusivity, mm2/s 58
3.7
Thermal Shock Resistance, points 8.4 to 22
12

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
24 to 26
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
49.4 to 56
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0