MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. N08031 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.5 to 16
45
Fatigue Strength, MPa 90 to 160
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 130 to 290
510
Tensile Strength: Ultimate (UTS), MPa 190 to 500
730
Tensile Strength: Yield (Proof), MPa 100 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.1
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1130
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
270
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 46
25
Strength to Weight: Bending, points 25 to 46
22
Thermal Diffusivity, mm2/s 58
3.1
Thermal Shock Resistance, points 8.4 to 22
14

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 3.9 to 5.0
1.0 to 1.4
Iron (Fe), % 0 to 0.7
29 to 36.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0