MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. Grade 24 Titanium

2017 aluminum belongs to the aluminum alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
11
Fatigue Strength, MPa 90 to 130
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 130 to 260
610
Tensile Strength: Ultimate (UTS), MPa 190 to 430
1010
Tensile Strength: Yield (Proof), MPa 76 to 260
940

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 150
7.1
Thermal Expansion, µm/m-K 24
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
43
Embodied Energy, MJ/kg 150
710
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
4160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 17 to 40
63
Strength to Weight: Bending, points 24 to 42
50
Thermal Diffusivity, mm2/s 56
2.9
Thermal Shock Resistance, points 7.9 to 18
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.4
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.2 to 0.8
0
Titanium (Ti), % 0 to 0.15
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4