MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. C32000 Brass

2017 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
41
Shear Strength, MPa 130 to 260
180 to 280
Tensile Strength: Ultimate (UTS), MPa 190 to 430
270 to 470
Tensile Strength: Yield (Proof), MPa 76 to 260
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
1020
Melting Onset (Solidus), °C 510
990
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
36
Electrical Conductivity: Equal Weight (Specific), % IACS 110
37

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
28 to 680
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 17 to 40
8.8 to 15
Strength to Weight: Bending, points 24 to 42
11 to 16
Thermal Diffusivity, mm2/s 56
47
Thermal Shock Resistance, points 7.9 to 18
9.5 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
83.5 to 86.5
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.2 to 0.8
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
10.6 to 15
Residuals, % 0 to 0.15
0 to 0.4