MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. 1050 Aluminum

Both 2018 aluminum and 1050 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 9.6
4.6 to 37
Fatigue Strength, MPa 120
31 to 57
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 270
52 to 81
Tensile Strength: Ultimate (UTS), MPa 420
76 to 140
Tensile Strength: Yield (Proof), MPa 310
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 510
650
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
230
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
61
Electrical Conductivity: Equal Weight (Specific), % IACS 120
200

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 670
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 38
7.8 to 14
Strength to Weight: Bending, points 41
15 to 22
Thermal Diffusivity, mm2/s 57
94
Thermal Shock Resistance, points 19
3.4 to 6.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.7 to 94.4
99.5 to 100
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0.45 to 0.9
0 to 0.050
Manganese (Mn), % 0 to 0.2
0 to 0.050
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0 to 0.25
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0