MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. ACI-ASTM CA15M Steel

2025 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
210
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 15
20
Fatigue Strength, MPa 130
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 400
690
Tensile Strength: Yield (Proof), MPa 260
510

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
27
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1130
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
130
Resilience: Unit (Modulus of Resilience), kJ/m3 450
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
25
Strength to Weight: Bending, points 40
22
Thermal Diffusivity, mm2/s 58
7.2
Thermal Shock Resistance, points 18
25

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
11.5 to 14
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
82.1 to 88.4
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
0.15 to 1.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0