MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.0060 Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.0060 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.0060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
13
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 240
380
Tensile Strength: Ultimate (UTS), MPa 400
630
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
53
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
7.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.7
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1130
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
70
Resilience: Unit (Modulus of Resilience), kJ/m3 450
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
22
Strength to Weight: Bending, points 40
21
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 18
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.9 to 95.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
99.876 to 100
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.055
Silicon (Si), % 0.5 to 1.2
0
Sulfur (S), % 0
0 to 0.055
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0