MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.4482 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 15
34
Fatigue Strength, MPa 130
420 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 240
510 to 530
Tensile Strength: Ultimate (UTS), MPa 400
770 to 800
Tensile Strength: Yield (Proof), MPa 260
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 450
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
28 to 29
Strength to Weight: Bending, points 40
24 to 25
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 18
21 to 22

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 3.9 to 5.0
0 to 1.0
Iron (Fe), % 0 to 1.0
66.1 to 74.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0