MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.4849 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
140
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
4.5
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 400
480
Tensile Strength: Yield (Proof), MPa 260
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 520
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 7.9
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
18
Resilience: Unit (Modulus of Resilience), kJ/m3 450
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
17
Strength to Weight: Bending, points 40
17
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 18
11

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
32.6 to 43.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0