MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. S33228 Stainless Steel

2036 aluminum belongs to the aluminum alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
34
Fatigue Strength, MPa 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 210
380
Tensile Strength: Ultimate (UTS), MPa 340
570
Tensile Strength: Yield (Proof), MPa 200
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.1
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 33
20
Strength to Weight: Bending, points 38
19
Thermal Shock Resistance, points 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
36.5 to 42.3
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0