MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. Grade TDSiCr Steel

206.0 aluminum belongs to the aluminum alloys classification, while grade TDSiCr steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is grade TDSiCr steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
590
Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 330 to 440
1950

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1150
48

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
70
Strength to Weight: Bending, points 35 to 42
45
Thermal Diffusivity, mm2/s 46
12
Thermal Shock Resistance, points 17 to 23
58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0.5 to 0.6
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.15
96.6 to 97.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.5 to 0.9
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
1.2 to 1.6
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0