MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. 5454 Aluminum

Both 2095 aluminum and 5454 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 8.5
2.3 to 18
Fatigue Strength, MPa 200
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 410
140 to 200
Tensile Strength: Ultimate (UTS), MPa 700
230 to 350
Tensile Strength: Yield (Proof), MPa 610
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 540
600
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.6
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1470
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
68 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 65
23 to 36
Strength to Weight: Bending, points 59
30 to 41
Thermal Diffusivity, mm2/s 49
55
Thermal Shock Resistance, points 31
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.9
94.5 to 97.1
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 3.9 to 4.6
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.4
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
2.4 to 3.0
Manganese (Mn), % 0 to 0.25
0.5 to 1.0
Silicon (Si), % 0 to 0.12
0 to 0.25
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15