MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. 6360 Aluminum

Both 2095 aluminum and 6360 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is 6360 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 8.5
9.0 to 18
Fatigue Strength, MPa 200
31 to 67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 410
76 to 130
Tensile Strength: Ultimate (UTS), MPa 700
120 to 220
Tensile Strength: Yield (Proof), MPa 610
57 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
160
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 540
630
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
54
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1470
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
24 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 65
13 to 23
Strength to Weight: Bending, points 59
20 to 30
Thermal Diffusivity, mm2/s 49
86
Thermal Shock Resistance, points 31
5.5 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.9
97.8 to 99.3
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 3.9 to 4.6
0 to 0.15
Iron (Fe), % 0 to 0.15
0.1 to 0.3
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0.25 to 0.45
Manganese (Mn), % 0 to 0.25
0.020 to 0.15
Silicon (Si), % 0 to 0.12
0.35 to 0.8
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15