MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. A535.0 Aluminum

Both 2095 aluminum and A535.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
67
Elongation at Break, % 8.5
9.0
Fatigue Strength, MPa 200
95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 700
250
Tensile Strength: Yield (Proof), MPa 610
120

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 540
550
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
79

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.6
9.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1470
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
19
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 65
26
Strength to Weight: Bending, points 59
33
Thermal Diffusivity, mm2/s 49
42
Thermal Shock Resistance, points 31
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.9
91.4 to 93.4
Copper (Cu), % 3.9 to 4.6
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.2
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
6.5 to 7.5
Manganese (Mn), % 0 to 0.25
0.1 to 0.25
Silicon (Si), % 0 to 0.12
0 to 0.2
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.15