MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. AWS ERNiCrFe-11

2095 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrFe-11 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is AWS ERNiCrFe-11.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.5
47
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 700
740

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Melting Completion (Liquidus), °C 660
1360
Melting Onset (Solidus), °C 540
1310
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
49
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1470
280

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 65
25
Strength to Weight: Bending, points 59
22
Thermal Diffusivity, mm2/s 49
2.9
Thermal Shock Resistance, points 31
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 94.9
1.0 to 1.7
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 3.9 to 4.6
0 to 1.0
Iron (Fe), % 0 to 0.15
7.2 to 20
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.5