MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. C75700 Nickel Silver

2095 aluminum belongs to the aluminum alloys classification, while C75700 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is C75700 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 8.5
3.2 to 22
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
45
Shear Strength, MPa 410
350 to 370
Tensile Strength: Ultimate (UTS), MPa 700
590 to 610
Tensile Strength: Yield (Proof), MPa 610
470 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
1040
Melting Onset (Solidus), °C 540
990
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.6
3.6
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 1470
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
930 to 1410
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 65
19 to 20
Strength to Weight: Bending, points 59
19
Thermal Diffusivity, mm2/s 49
12
Thermal Shock Resistance, points 31
22 to 23

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Copper (Cu), % 3.9 to 4.6
63.5 to 66.5
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.5
Nickel (Ni), % 0
11 to 13
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
19.2 to 25.5
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0 to 0.5