MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. 2014 Aluminum

Both 213.0 aluminum and 2014 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 1.5
1.5 to 16
Fatigue Strength, MPa 93
90 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 190
190 to 500
Tensile Strength: Yield (Proof), MPa 130
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 670
630
Melting Onset (Solidus), °C 480
510
Specific Heat Capacity, J/kg-K 850
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 94
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.2
3.0
Embodied Carbon, kg CO2/kg material 7.7
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1090
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 120
76 to 1330
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
46
Strength to Weight: Axial, points 16
18 to 46
Strength to Weight: Bending, points 23
25 to 46
Thermal Diffusivity, mm2/s 49
58
Thermal Shock Resistance, points 8.0
8.4 to 22

Alloy Composition

Aluminum (Al), % 83.5 to 93
90.4 to 95
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 6.0 to 8.0
3.9 to 5.0
Iron (Fe), % 0 to 1.2
0 to 0.7
Magnesium (Mg), % 0 to 0.1
0.2 to 0.8
Manganese (Mn), % 0 to 0.6
0.4 to 1.2
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 1.0 to 3.0
0.5 to 1.2
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 2.5
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.15