MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. AWS E312

2195 aluminum belongs to the aluminum alloys classification, while AWS E312 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is AWS E312.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
25
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 590
740

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
20
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.6
3.6
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1470
200

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
27
Strength to Weight: Bending, points 53
24
Thermal Shock Resistance, points 26
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 3.7 to 4.3
0 to 0.75
Iron (Fe), % 0 to 0.15
52.3 to 63.5
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
8.0 to 10.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0