MakeItFrom.com
Menu (ESC)

3005-O Aluminum vs. Annealed AISI 304

3005-O aluminum belongs to the aluminum alloys classification, while annealed AISI 304 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3005-O aluminum and the bottom bar is annealed AISI 304.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 33
170
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 16
43
Fatigue Strength, MPa 53
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 84
400
Tensile Strength: Ultimate (UTS), MPa 140
580
Tensile Strength: Yield (Proof), MPa 51
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
710
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
200
Resilience: Unit (Modulus of Resilience), kJ/m3 18
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 64
4.2
Thermal Shock Resistance, points 6.0
12

Alloy Composition

Aluminum (Al), % 95.7 to 98.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
66.5 to 74
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 1.0 to 1.5
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0