MakeItFrom.com
Menu (ESC)

3104 Aluminum vs. S31254 Stainless Steel

3104 aluminum belongs to the aluminum alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3104 aluminum and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 20
40
Fatigue Strength, MPa 74 to 130
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 110 to 180
490
Tensile Strength: Ultimate (UTS), MPa 170 to 310
720
Tensile Strength: Yield (Proof), MPa 68 to 270
330

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.4
5.5
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 60
240
Resilience: Unit (Modulus of Resilience), kJ/m3 34 to 540
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 17 to 31
25
Strength to Weight: Bending, points 25 to 37
22
Thermal Diffusivity, mm2/s 64
3.8
Thermal Shock Resistance, points 7.6 to 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.1 to 98.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 0.050 to 0.25
0.5 to 1.0
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
51.4 to 56.3
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0.8 to 1.4
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0