MakeItFrom.com
Menu (ESC)

3104-H14 Aluminum vs. 5083-H14 Aluminum

Both 3104-H14 aluminum and 5083-H14 aluminum are aluminum alloys. Both are furnished in the H14 temper. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 3104-H14 aluminum and the bottom bar is 5083-H14 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 4.5
3.4
Fatigue Strength, MPa 97
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 140
210
Tensile Strength: Ultimate (UTS), MPa 240
360
Tensile Strength: Yield (Proof), MPa 200
290

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
11
Resilience: Unit (Modulus of Resilience), kJ/m3 290
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 25
37
Strength to Weight: Bending, points 31
41
Thermal Diffusivity, mm2/s 64
48
Thermal Shock Resistance, points 11
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.1 to 98.4
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0.050 to 0.25
0 to 0.1
Gallium (Ga), % 0 to 0.050
0
Iron (Fe), % 0 to 0.8
0 to 0.4
Magnesium (Mg), % 0.8 to 1.3
4.0 to 4.9
Manganese (Mn), % 0.8 to 1.4
0.4 to 1.0
Silicon (Si), % 0 to 0.6
0 to 0.4
Titanium (Ti), % 0 to 0.1
0 to 0.15
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15