MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. EN 1.3956 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while EN 1.3956 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is EN 1.3956 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
27
Fatigue Strength, MPa 76 to 80
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 190 to 240
650
Tensile Strength: Yield (Proof), MPa 110 to 180
330

Thermal Properties

Latent Heat of Fusion, J/g 480
300
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
4.8
Embodied Energy, MJ/kg 140
68
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
150
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 18 to 24
23
Strength to Weight: Bending, points 25 to 30
21
Thermal Shock Resistance, points 8.6 to 11
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
51.9 to 62.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.35
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.5 to 6.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0