MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. S32654 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while S32654 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is S32654 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
220
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.8 to 2.0
45
Fatigue Strength, MPa 76 to 80
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
82
Shear Strength, MPa 170 to 210
590
Tensile Strength: Ultimate (UTS), MPa 190 to 240
850
Tensile Strength: Yield (Proof), MPa 110 to 180
490

Thermal Properties

Latent Heat of Fusion, J/g 480
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
6.4
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 1080
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
330
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 18 to 24
29
Strength to Weight: Bending, points 25 to 30
25
Thermal Diffusivity, mm2/s 44
2.9
Thermal Shock Resistance, points 8.6 to 11
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 25
Copper (Cu), % 3.0 to 4.0
0.3 to 0.6
Iron (Fe), % 0 to 1.0
38.3 to 45.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 0.35
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 5.5 to 6.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0