MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. 1085 Aluminum

Both 324.0 aluminum and 1085 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is 1085 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 3.0 to 4.0
4.5 to 39
Fatigue Strength, MPa 77 to 89
22 to 49
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 210 to 310
73 to 140
Tensile Strength: Yield (Proof), MPa 110 to 270
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 550
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 150
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
61
Electrical Conductivity: Equal Weight (Specific), % IACS 120
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1090
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
2.1 to 110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 22 to 32
7.5 to 14
Strength to Weight: Bending, points 29 to 38
14 to 22
Thermal Diffusivity, mm2/s 62
94
Thermal Shock Resistance, points 9.7 to 14
3.3 to 6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.3 to 92.2
99.85 to 100
Copper (Cu), % 0.4 to 0.6
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 1.2
0 to 0.12
Magnesium (Mg), % 0.4 to 0.7
0 to 0.020
Manganese (Mn), % 0 to 0.5
0 to 0.020
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 7.0 to 8.0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.020
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 1.0
0 to 0.030
Residuals, % 0 to 0.2
0 to 0.010