MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. 5082 Aluminum

Both 333.0 aluminum and 5082 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
67
Elongation at Break, % 1.0 to 2.0
1.1
Fatigue Strength, MPa 83 to 100
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
25
Shear Strength, MPa 190 to 230
210 to 230
Tensile Strength: Ultimate (UTS), MPa 230 to 280
380 to 400
Tensile Strength: Yield (Proof), MPa 130 to 210
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 530
560
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 100 to 140
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
32
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
670 to 870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
51
Strength to Weight: Axial, points 22 to 27
39 to 41
Strength to Weight: Bending, points 29 to 34
43 to 45
Thermal Diffusivity, mm2/s 42 to 57
54
Thermal Shock Resistance, points 11 to 13
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.8 to 89
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 3.0 to 4.0
0 to 0.15
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 0.050 to 0.5
4.0 to 5.0
Manganese (Mn), % 0 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 8.0 to 10
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 1.0
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15